86 research outputs found

    The breeding-season population structure of three sympatric, territorial sticklebacks (Pisces: Gasterosteidae)

    Get PDF
    Animals breeding only once late in life should spend most of the time during their one reproductive season attempting to reproduce. Contrary to this prediction, we found that the individuals of three species of sticklebacks (Pisces: Gasterosteidae) spent very short periods of time on their breeding ground. Tidal flooding of the site controlled patterns offish immigration and emigration. Inundations early in the breeding season brought in new immigrants which replaced most resident fish. However, towards the end of the breeding season there was less immigration and a higher percentage of the residents remained in their pools. We expected to see movements among pools by surplus males searching for sites to establish a territory; instead, few fish moved among pools, and most ofthose that did were females. A high energetic cost of breeding in this unstable habitat may best explain these residency patterns

    Marine depth use of sea trout Salmo trutta in fjord areas of central Norway:marine depth use of salmo trutta

    Get PDF
    The vertical behaviour of 44 veteran sea trout Salmo trutta (275–580 mm) in different marine fjord habitats (estuary, pelagic, near shore with and without steep cliffs) was documented during May–February by acoustic telemetry. The swimming depth of S. trutta was influenced by habitat, time of day (day v. night), season, seawater temperature and the body length at the time of tagging. Mean swimming depth during May–September was 1·7 m (individual means ranged from 0·4 to 6·4 m). Hence, S. trutta were generally surface oriented, but performed dives down to 24 m. Mean swimming depth in May–September was deeper in the near‐shore habitats with or without steep cliffs (2·0 m and 2·5 m, respectively) than in the pelagic areas (1·2 m). May–September mean swimming depth in all habitats was slightly deeper during day (1·9 m) than at night (1·2 m), confirming that S. trutta conducted small‐scale diel vertical movements. During summer, S. trutta residing in near‐shore habitat progressively moved deeper over the period May (mean 1·1 m) to August (mean 4·0 m) and then reoccupied shallower areas (mean 2·3 m) during September. In winter (November and February), individuals residing in the innermost part of the fjords were found at similar average depths as they occupied during the summer (mean 1·3 m). The swimming depths of S. trutta coincide with the previously known surface orientation of salmon lice Lepeophtheirus salmonis. Combined with previous studies on horizontal use of S. trutta, this study illustrates how S. trutta utilize marine water bodies commonly influenced by anthropogenic factors such as aquaculture, harbours and marine constructions, marine renewable energy production or other human activity. This suggests that the marine behaviour of S. trutta and its susceptibility to coastal anthropogenic factors should be considered in marine planning processes

    A standardisation framework for bio‐logging data to advance ecological research and conservation

    Get PDF
    Bio‐logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio‐logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio‐logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy‐of‐use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter‐governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio‐logging data formats across all fields in animal ecology

    Evolving and sustaining ocean best practices and standards for the next decade

    Get PDF
    The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet's ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into "Ocean Best Practices." While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung fĂŒr Biologische ForschungDefr

    Evolving and sustaining ocean best practices and standards for the next decade

    Get PDF
    The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet’s ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into “Ocean Best Practices.” While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come
    • 

    corecore